289 research outputs found

    Semantic Segmentation of Remote-Sensing Images Through Fully Convolutional Neural Networks and Hierarchical Probabilistic Graphical Models

    Get PDF
    Deep learning (DL) is currently the dominant approach to image classification and segmentation, but the performances of DL methods are remarkably influenced by the quantity and quality of the ground truth (GT) used for training. In this article, a DL method is presented to deal with the semantic segmentation of very-high-resolution (VHR) remote-sensing data in the case of scarce GT. The main idea is to combine a specific type of deep convolutional neural networks (CNNs), namely fully convolutional networks (FCNs), with probabilistic graphical models (PGMs). Our method takes advantage of the intrinsic multiscale behavior of FCNs to deal with multiscale data representations and to connect them to a hierarchical Markov model (e.g., making use of a quadtree). As a consequence, the spatial information present in the data is better exploited, allowing a reduced sensitivity to GT incompleteness to be obtained. The marginal posterior mode (MPM) criterion is used for inference in the proposed framework. To assess the capabilities of the proposed method, the experimental validation is conducted with the ISPRS 2D Semantic Labeling Challenge datasets on the cities of Vaihingen and Potsdam, with some modifications to simulate the spatially sparse GTs that are common in real remote-sensing applications. The results are quite significant, as the proposed approach exhibits a higher producer accuracy than the standard FCNs considered and especially mitigates the impact of scarce GTs on minority classes and small spatial details

    Registration of Multisensor Images through a Conditional Generative Adversarial Network and a Correlation-Type Similarity Measure

    Get PDF
    The automatic registration of multisensor remote sensing images is a highly challenging task due to the inherently different physical, statistical, and textural characteristics of the input data. Information-theoretic measures are often used to favor comparing local intensity distributions in the images. In this paper, a novel method based on the combination of a deep learning architecture and a correlation-type area-based functional is proposed for the registration of a multisensor pair of images, including an optical image and a synthetic aperture radar (SAR) image. The method makes use of a conditional generative adversarial network (cGAN) in order to address image-to-image translation across the optical and SAR data sources. Then, once the optical and SAR data are brought to a common domain, an area-based â„“2 similarity measure is used together with the COBYLA constrained maximization algorithm for registration purposes. While correlation-type functionals are usually ineffective in the application to multisensor registration, exploiting the image-to-image translation capabilities of cGAN architectures allows moving the complexity of the comparison to the domain adaptation step, thus enabling the use of a simple â„“2 similarity measure, favoring high computational efficiency, and opening the possibility to process a large amount of data at runtime. Experiments with multispectral and panchromatic optical data combined with SAR images suggest the effectiveness of this strategy and the capability of the proposed method to achieve more accurate registration as compared to state-of-the-art approaches

    Hierarchical Probabilistic Graphical Models and Deep Convolutional Neural Networks for Remote Sensing Image Classification

    Get PDF
    The method presented in this paper for semantic segmentation of multiresolution remote sensing images involves convolutional neural networks (CNNs), in particular fully convolutional networks (FCNs), and hierarchical probabilistic graphical models (PGMs). These approaches are combined to overcome the limitations in classification accuracy of CNNs for small or non-exhaustive ground truth (GT) datasets. Hierarchical PGMs, e.g., hierarchical Markov random fields (MRFs), are structured output learning models that exploit information contained at different image scales. This perfectly matches the intrinsically multiscale behavior of the processes of a CNN (e.g., pooling layers). The framework consists of a hierarchical MRF on a quadtree and a planar Markov model on each layer, modeling the interactions among pixels and accounting for both the multiscale and the spatial-contextual information. The marginal posterior mode criterion is used for inference. The adopted FCN is the U-Net and the experimental validation is conducted on the ISPRS 2D Semantic Labeling Challenge Vaihingen dataset, with some modifications to approach the case of scarce GTs and to assess the classification accuracy of the proposed technique. The proposed framework attains a higher recall compared to the considered FCNs, progressively more relevant as the training set is further from the ideal case of exhaustive GTs

    A CAUSAL HIERARCHICAL MARKOV FRAMEWORK FOR THE CLASSIFICATION OF MULTIRESOLUTION AND MULTISENSOR REMOTE SENSING IMAGES

    Get PDF
    Abstract. In this paper, a multiscale Markov framework is proposed in order to address the problem of the classification of multiresolution and multisensor remotely sensed data. The proposed framework makes use of a quadtree to model the interactions across different spatial resolutions and a Markov model with respect to a generic total order relation to deal with contextual information at each scale in order to favor applicability to very high resolution imagery. The methodological properties of the proposed hierarchical framework are investigated. Firstly, we prove the causality of the overall proposed model, a particularly advantageous property in terms of computational cost of the inference. Secondly, we prove the expression of the marginal posterior mode criterion for inference on the proposed framework. Within this framework, a specific algorithm is formulated by defining, within each layer of the quadtree, a Markov chain model with respect to a pixel scan that combines both a zig-zag trajectory and a Hilbert space-filling curve. Data collected by distinct sensors at the same spatial resolution are fused through gradient boosted regression trees. The developed algorithm was experimentally validated with two very high resolution datasets including multispectral, panchromatic and radar satellite images. The experimental results confirm the effectiveness of the proposed algorithm as compared to previous techniques based on alternate approaches to multiresolution fusion

    Automatic Extraction of Planetary Image Features

    Get PDF
    With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration

    Unsupervised Detection of Planetary Craters by a Marked Point Process

    Get PDF
    With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features

    Deep Image Translation with an Affinity-Based Change Prior for Unsupervised Multimodal Change Detection

    Get PDF
    Image translation with convolutional neural networks has recently been used as an approach to multimodal change detection. Existing approaches train the networks by exploiting supervised information of the change areas, which, however, is not always available. A main challenge in the unsupervised problem setting is to avoid that change pixels affect the learning of the translation function. We propose two new network architectures trained with loss functions weighted by priors that reduce the impact of change pixels on the learning objective. The change prior is derived in an unsupervised fashion from relational pixel information captured by domain-specific affinity matrices. Specifically, we use the vertex degrees associated with an absolute affinity difference matrix and demonstrate their utility in combination with cycle consistency and adversarial training. The proposed neural networks are compared with the state-of-the-art algorithms. Experiments conducted on three real data sets show the effectiveness of our methodology

    Neutrino statistics and big bang nucleosynthesis

    Full text link
    Neutrinos may possibly violate the spin-statistics theorem, and hence obey Bose statistics or mixed statistics despite having spin half. We find the generalized equilibrium distribution function of neutrinos which depends on a single fermi-bose parameter, \kappa, and interpolates continuously between the bosonic and fermionic distributions when \kappa changes from -1 to +1. We consider modification of the Big Bang Nucleosynthesis (BBN) in the presence of bosonic or partly bosonic neutrinos. For pure bosonic neutrinos the abundances change (in comparison with the usual Fermi-Dirac case) by -3.2% for 4He (which is equivalent to a decrease of the effective number of neutrinos by \Delta N_\nu = - 0.6), +2.6% for 2H and -7% for 7Li. These changes provide a better fit to the BBN data. Future BBN studies will be able to constrain the fermi-bose parameter to \kappa > 0.5, if no deviation from fermionic nature of neutrinos is found. We also evaluate the sensitivity of future CMB and LSS observations to the fermi-bose parameter.Comment: 11 pages, 3 figures, matches version in JCAP, discussion and references extended slightl

    Evaluating LoRaWAN connectivity in a marine scenario

    Get PDF
    The growing need for interoperability among the different oceanic monitoring systems to deliver services able to answer the requirements of stakeholders and end-users led to the development of a low-cost machine-to-machine communication system able to guarantee data reliability over marine paths. In this framework, an experimental evaluation of the performance of long-range (LoRa) technology in a fully operational marine scenario has been proposed. In-situ tests were carried out exploiting the availability of (i) a passenger vessel and (ii) a research vessel operating in the Ligurian basin (North-Western Mediterranean Sea) both hosting end-nodes, and (iii) gateways positioned on mountains and hills in the inland areas. Packet loss ratio, packet reception rate, received signal strength indicator, signal to noise, and expected signal power ratio were chosen as metrics in line of sight and not the line of sight conditions. The reliability of Long Range Wide Area Network (LoRaWAN) transmission over the sea has been demonstrated up to more than 110 km in a free space scenario and for more than 20 km in a coastal urban environment
    • …
    corecore